Source code for out3Plot.outDistanceTimeAnalysis

""" functions to plot range-time diagrams """

import numpy as np
from matplotlib import pyplot as plt
import logging
import pathlib
from cmcrameri import cm
from matplotlib.colors import LightSource
import pandas as pd

# Local imports
import avaframe.out3Plot.plotUtils as pU
import avaframe.ana5Utils.distanceTimeAnalysis as dtAna
import avaframe.in3Utils.geoTrans as gT
# from avaframe.Tools import NodeTools

log = logging.getLogger(__name__)


[docs]def plotRangeTime(mtiInfo, cfgRangeTime): """plot range-time diagram with avalanche front and colorcoded average values of result parameter Parameters ----------- mtiInfo: dict dictionary with average values for range to reference point (mti), timeStep list, list with distance to reference point of avalanche front (rangeList) cfgRangeTime: configparser object configuration settings for range time diagram - here used avalancheDir, rangeTimeResType, simHash, and from plots width, height, lw, .. """ # create plot fig = plt.figure(figsize=(pU.figW, pU.figH)) ax = fig.add_subplot(1, 1, 1) plt.title(mtiInfo["plotTitle"]) # add plot to axes ax, rangeTimeResType = addRangeTimePlotToAxes(mtiInfo, cfgRangeTime, ax) # set path for saving figure outDir = pathlib.Path(cfgRangeTime["GENERAL"]["avalancheDir"], "Outputs", "ana5Utils") outFileName = mtiInfo["type"] + "_" + rangeTimeResType + "_" + cfgRangeTime["GENERAL"]["simHash"] plotPath = pU.saveAndOrPlot({"pathResult": outDir}, outFileName, fig)
[docs]def addRangeTimePlotToAxes(mtiInfo, cfgRangeTime, ax): """add plot range-time diagram with avalanche front and colorcoded average values of result parameter Parameters ----------- mtiInfo: dict dictionary with average values for range to reference point (mti), timeStep list, list with distance to reference point of avalanche front (rangeList) cfgRangeTime: configparser object configuration settings for range time diagram - here used avalancheDir, rangeTimeResType, simHash, and from plots width, height, lw, .. ax: matplotlib axes object axes where plot shall be added to """ # fetch required input info mti = mtiInfo["mti"] rangeGates = mtiInfo["rangeGates"] timeList = mtiInfo["timeList"] rangeList = mtiInfo["rangeList"] rangeTimeResType = cfgRangeTime["GENERAL"]["rangeTimeResType"] maxVel, rangeVel, timeVel = dtAna.approachVelocity(mtiInfo) # in case time steps are not ordered - the colormesh x and y need to be ordered timeIndex = np.argsort(np.array(timeList)) timeListNew = np.array(timeList)[timeIndex] mti = mti[:, timeIndex] # fetch velocity legend style info width = cfgRangeTime["PLOTS"].getfloat("width") height = cfgRangeTime["PLOTS"].getfloat("height") lw = cfgRangeTime["PLOTS"].getfloat("lw") textsize = cfgRangeTime["PLOTS"].getfloat("textsize") pc = plt.pcolormesh(timeListNew, rangeGates, mti, cmap=pU.cmapRangeTime) ax.plot(timeList, rangeList, ".", color="black", markersize=4, label="avalanche front") ax.set_xlabel("Time [s]") # add y label axis if mtiInfo["type"] == "thalwegTime": sTypeCapital = mtiInfo["sType"][0].upper() + mtiInfo["sType"][1:] if cfgRangeTime['GENERAL'].getboolean('originStart'): ax.set_ylabel("$S_{XY}$ [m]") else: labelY = r'$\beta_{%.1f°}$' % mtiInfo['betaPointAngle'] ax.set_ylabel("%s distance to %s [m]" % (sTypeCapital, labelY)) else: ax.set_ylabel("Distance to %s [m]" % mtiInfo["referencePointName"]) # add colorbar and infobox unit = pU.cfgPlotUtils["unit" + rangeTimeResType] if cfgRangeTime["GENERAL"]["maxOrMean"].lower() == "max": avgType = "max" else: avgType = "avg." cName = "%s " % avgType + pU.cfgPlotUtils["name" + rangeTimeResType] pU.addColorBar(pc, ax, None, unit, title=cName) pU.putAvaNameOnPlot(ax, cfgRangeTime["GENERAL"]["avalancheDir"]) # add range time velocity legend rangeTimeVelocityLegend(ax, maxVel, width, height, lw, textsize) # add max velocity location ax.plot(timeVel, rangeVel, "r*", label="max velocity location") # FSO: is this needed? # cbar.ax.axhline(y=maxVel, color='r', lw=1, label='max velocity') # add info on avalanche front in legend ax.legend(facecolor="grey", framealpha=0.2, loc="lower right", fontsize=8) # if tt-diagram add beta point info if mtiInfo["type"] == "thalwegTime": # invert y axis as ava flow starts from minus distance to beta point ax.invert_yaxis() ax.axhline( y=0.0, color="gray", linestyle="--", linewidth=1, alpha=0.5, label="beta point: %.1f°" % mtiInfo["betaPointAngle"], ) return ax, rangeTimeResType
[docs]def radarFieldOfViewPlot(radarFov, radarRange, cfgRangeTime, rangeGates, dem): """Create radar field of view plot Parameters ----------- radarFov: numpy array list with radar location and end point of field of view, x and y coors radarRange: masked array masked array of DEM with radar field of view - showing distance to radar cfgRangeTime: configparser object configuration settings section - here used avalancheDir, simHash, aperture angle [degree] rangeGates: numpy array range gates of radar field of view dem: dict dictionary with dem header and data """ # get input parameters aperture = cfgRangeTime["GENERAL"].getfloat("aperture") # fetch header info - required for creating coordinate grid xllc = dem["header"]["xllcenter"] yllc = dem["header"]["yllcenter"] ncols = dem["header"]["ncols"] nrows = dem["header"]["nrows"] cellSize = dem["header"]["cellsize"] # Set coordinate grid with given origin X, Y = gT.makeCoordinateGrid(xllc, yllc, cellSize, ncols, nrows) # load required input parameters for contour plot gateContours = cfgRangeTime["PLOTS"].getint("gateContours") # get field of view with radar location and aperture angle xR = gT.rotate(radarFov, aperture) xL = gT.rotate(radarFov, -aperture) radarFovArrow = np.diff(radarFov) * 0.2 # create plot of radar range values and field of view fig = plt.figure(figsize=(pU.figW, pU.figH)) ax1 = plt.subplot(111) cmapRadar = pU.cmapRadarFOV cmapRadar.set_bad("w", alpha=0.0) pc = plt.pcolormesh(X, Y, radarRange, cmap=cmapRadar) ax1.plot(radarFov[0], radarFov[1], marker="o", color="k", zorder=1) ax1.contour(X, Y, radarRange, rangeGates[::gateContours], colors=["brown"], alpha=0.5, linewidths=0.5) ax1.plot(xR[0], xR[1], marker="o", color="k") ax1.plot(xL[0], xL[1], marker="o", color="k") ax1.arrow( x=radarFov[0][0], y=radarFov[1][0], dx=radarFovArrow[0][0], dy=radarFovArrow[1][0], fc="r", ec="r", width=10, zorder=2, ) ax1.set_title("Radar range") ax1.set_xlabel("x [m]") ax1.set_ylabel("y [m]") plt.xticks(rotation=45) # add colorbar and infoboxes unit = "m" cName = "range" pU.addColorBar(pc, ax1, None, unit, title=cName) pU.putAvaNameOnPlot(ax1, cfgRangeTime["GENERAL"]["avalancheDir"]) pU.putInfoBox(ax1, "- range gates [%d]" % gateContours, location="lowerRight", color="brown") # create plot of DEM and radar field of view fig2 = plt.figure(figsize=(pU.figW, pU.figH)) # add second panel with DEM and radar location ax2 = plt.subplot(111) # pc0 = plt.pcolormesh(X, Y, dem['rasterData'], cmap=cm.grayC) ls = LightSource(azdeg=315, altdeg=45) ax2.imshow( ls.hillshade( dem["rasterData"], vert_exag=10, dx=dem["rasterData"].shape[1], dy=dem["rasterData"].shape[0] ), cmap="gray", extent=[np.amin(X), np.amax(X), np.amin(Y), np.amax(Y)], origin="lower", ) CS = ax2.contour(X, Y, dem["rasterData"], colors=["brown"], alpha=0.75, linewidths=0.5) # add radar field of view ax2.plot(radarFov[0], radarFov[1], marker="o", color="k", zorder=1) ax2.plot(xR[0], xR[1], marker="o", color="k") ax2.plot(xL[0], xL[1], marker="o", color="k") ax2.set_title("DEM with radar location") ax2.set_xlabel("x [m]") ax2.set_ylabel("y [m]") plt.xticks(rotation=45) # add infoboxes pU.putAvaNameOnPlot(ax2, cfgRangeTime["GENERAL"]["avalancheDir"]) pU.putInfoBox(ax2, "- elevation [m]", location="lowerRight", color="brown") ax2.clabel(CS, CS.levels, inline=True, fontsize=10) # set path for saving figure outDir = pathlib.Path(cfgRangeTime["GENERAL"]["avalancheDir"], "Outputs", "ana5Utils") outFileName = "radarFieldOfViewPlot_%s" % cfgRangeTime["GENERAL"]["simHash"] plotPath = pU.saveAndOrPlot({"pathResult": outDir}, outFileName, fig) outFileName = "radarFieldOfViewPlotDEM_%s" % cfgRangeTime["GENERAL"]["simHash"] plotPath = pU.saveAndOrPlot({"pathResult": outDir}, outFileName, fig2)
[docs]def plotRangeRaster(slRaster, rasterTransfo, cfgRangeTime, rangeRaster, cLower): """create plot of distance from start of runout area point extracted avalanche front and result field Parameters ----------- slRaster: numpy array transformed result field rasterTransfo: dict info on coordinate transformation cfgRangeTime: configparser object configuration settings of range time diagram rangeRaster: np array distance to runout area point in s coordinate cLower: int index of avalanche front """ # fetch unit for result parameter resType = cfgRangeTime["rangeTimeResType"] unitRes = pU.cfgPlotUtils["unit" + resType] # fetch s. l coordinates l = rasterTransfo["l"] s = rasterTransfo["s"] indStartOfRunout = rasterTransfo["indStartOfRunout"] # create figure fig = plt.figure(figsize=(pU.figW * 1.5, pU.figH)) ax1 = plt.subplot(111) plt.title("Distance to reference point and %s field" % pU.cfgPlotUtils["name" + resType]) # create colormap for range field cmapRange, _, ticksRange, normRange = pU.makeColorMap( cm.grayC.reversed(), np.nanmin(rangeRaster), np.nanmax(rangeRaster), continuous=pU.contCmap ) # add imshow plot of range ref0, im1 = pU.NonUnifIm( ax1, l, s, rangeRaster, "l [m]", "s [m]", extent=[l.min(), l.max(), s.min(), s.max()], cmap=cmapRange ) # add horizontal line indicating location of start of runout area and avalanche front ax1.axhline( y=s[indStartOfRunout], color="w", linestyle="--", label="start of run-out area point : %.1f °" % rasterTransfo["startOfRunoutAreaAngle"], ) if np.isnan(cLower): log.debug("No avalanche front found for this time step") else: ax1.axhline( y=s[cLower], color="y", linestyle="--", label="avalanche front based on %s limit %s" % (resType, cfgRangeTime["thresholdResult"]), ) # add result field masked with threshold bmaskRes = slRaster < cfgRangeTime.getfloat("thresholdResult") maskResType = np.ma.array(slRaster, mask=bmaskRes) # create colormap cmapRes, _, ticksRes, normRes = pU.makeColorMap( pU.colorMaps[resType], np.nanmin(maskResType), np.nanmax(maskResType), continuous=True ) cmapRes.set_bad(alpha=0.0) ref2, im2 = pU.NonUnifIm( ax1, l, s, maskResType, "l [m]", "s [m]", extent=[l.min(), l.max(), s.min(), s.max()], cmap=cmapRes ) # add legend and colorbar ax1.legend(loc="center", facecolor="black", framealpha=0.2) pU.addColorBar(im1, ax1, ticksRange, "m", pad=0.005) pU.addColorBar(im2, ax1, ticksRes, unitRes) # create plot name and location for saving and save/plot outDir = pathlib.Path(cfgRangeTime["avalancheDir"], "Outputs", "ana5Utils") pathDict = {"pathResult": outDir} outFileName = "distanceToStartOfRunoutArea_%s_%s" % (resType, cfgRangeTime["simHash"]) pU.saveAndOrPlot(pathDict, outFileName, fig)
[docs]def plotMaskForMTI(cfgRangeTime, bmaskRange, bmaskAvaRadar, bmaskAvaRadarRangeslice, mtiInfo): """plot masks used to compute averages for range-time diagram with radar field of view Parameters ----------- cfgRangeTime: configparser settings configuration settings for range time diagram, avalancheDir bmaskRange: numpy mask mask for radar range slice for range gate and rgWidth bmaskAvaRadar: numpy mask mask for result parameter below threshold and out of radar field of view bmaskAvaRadarRangeslice: numpy mask full mask combination """ # get extent of masks headerInfo = mtiInfo["demOriginal"]["header"] x0 = headerInfo["xllcenter"] y0 = headerInfo["yllcenter"] x1 = headerInfo["xllcenter"] + headerInfo["cellsize"] * (bmaskRange.shape[1] - 1) y1 = headerInfo["yllcenter"] + headerInfo["cellsize"] * (bmaskRange.shape[0] - 1) shiftCorner = 0.5 * headerInfo['cellsize'] # create extent for plot of raster data using cell corners - lower left (-shiftCorner) to upper right (+shiftCorner) from cell centers extentPlot = [x0-shiftCorner, x1+shiftCorner, y0-shiftCorner, y1+shiftCorner] # dimensions nx = bmaskRange.shape[1] ny = bmaskRange.shape[0] # create figure with three panels fig = plt.figure(figsize=(pU.figW * 3, pU.figH)) # add radar range gate mask ax1 = fig.add_subplot(131) ax1.set_title("Radar range gate mask") pU.checkExtentFormat(extentPlot, headerInfo['cellsize'], bmaskRange, plotName="") ax1.imshow(bmaskRange, extent=extentPlot, origin="lower", aspect=nx / ny) # add masked avalanche result field with threshold and radar field of view ax2 = fig.add_subplot(132) ax2.set_title("RadarFOV and resultThreshold mask") ax2.imshow(bmaskAvaRadar, extent=extentPlot, origin="lower", aspect=nx / ny) # add combined mask ax3 = fig.add_subplot(133) ax3.set_title("Combined mask") ax3.imshow(bmaskAvaRadarRangeslice, extent=extentPlot, origin="lower", aspect=nx / ny) # create plot name and location for saving and save/plot outDir = pathlib.Path(cfgRangeTime["avalancheDir"], "Outputs", "ana5Utils") pathDict = {"pathResult": outDir} outFileName = "rangeTimeMasks_%s" % cfgRangeTime["simHash"] pU.saveAndOrPlot(pathDict, outFileName, fig)
[docs]def getMaxVelocityPoint(width, height, maxVel, diagVel): """get point of max approach velocity in axes coordinates Parameters ----------- width: float fractional percentage of legend width height: float fractional percentage of legend height maxVel: float maximum approach velocity value diagVel: float x/y ratio of axes Returns -------- point: tuple x, y axes coordinates of maximum velocity """ # along bottom line if maxVel > diagVel: point = [(1 - width) + width / maxVel * diagVel, 1 - height] else: # along re vert line point = [1, 1 - height * maxVel / diagVel] return point
[docs]def rangeTimeVelocityLegend(ax, maxVel, width, height, lw, textsize): """set legend in range time diagram for velocity in terms of steepness of front position connects to figure callback to react to zoom/pan events Parameters ---------- ax: matplotlib axes object figure axes object maxVel: float maximum approach velocity value width : float , *0.25 fractional percentage of legend width height: float fractional percentage of legend height lw: float linewidth for legend line textsize: float textsize for legend entries """ # keep track of which text elements belong to this legend thing... inititalNrOfTextElements = len(ax.texts) # get legend points in axes coordinates point = getVelocityPoints(1, 1, width, height, 1, 1) # add title and boundary box and diagonal lines using point lVmax = addTitleBox(ax, width, height, lw, point, textsize, maxVel=True) # ---- internal functions ---- def zoomLvlChange(eventAx, first=False): """ Function to annotate the diagonal lines with velocity values. Flag first decides if the text elements are created (must be called once) or if just the text is changed (figure callback) """ # get current axes limits xdMax = max(eventAx.get_xlim()) # timesteps[-1] ydMax = max(eventAx.get_ylim()) # max(rangegates) xdIntervall = max(eventAx.get_xlim()) - min(eventAx.get_xlim()) ydIntervall = max(eventAx.get_ylim()) - min( eventAx.get_ylim() ) # y_max-rangegates[0] # from min to max vDiag = ydIntervall / xdIntervall # calculate current velocities of diagonal lines dataPoint = getVelocityPoints(xdMax, ydMax, width, height, xdIntervall, ydIntervall) textElementNr = addVelocityValues( ax, dataPoint, point, first=first, inititalNrOfTextElements=inititalNrOfTextElements ) # make or update max velocity line and text maxVelPoint = getMaxVelocityPoint(width, height, maxVel, vDiag) if maxVel < vDiag: xLoc = maxVelPoint[0] - 0.04 yLoc = maxVelPoint[1] - 0.004 else: xLoc = maxVelPoint[0] yLoc = maxVelPoint[1] + 0.004 if first: eventAx.text( xLoc, yLoc, "max %.1f" % maxVel, size=5, fontweight="bold", color="r", transform=ax.transAxes, gid=len(point) - 2, va="center", ha="left", bbox=dict(facecolor="white", alpha=0.5), ) else: ax.texts[textElementNr + 1].set_position((xLoc, yLoc)) lVmax.set_data([point[0][0], maxVelPoint[0]], [point[0][1], maxVelPoint[1]]) # ---- internal functions end ---- # make the text, e.g. the mandatory first=True call zoomLvlChange(ax, first=True) # connect callback ax.callbacks.connect("xlim_changed", zoomLvlChange) ax.callbacks.connect("ylim_changed", zoomLvlChange)
[docs]def addTitleBox(ax, width, height, lw, point, textsize, maxVel=True): """add velocity legend title and boundary box and diagonal lines if maxVel=True add max velocity line in red Parameters ----------- ax: matplotlib axes object axes object for legend width: float fractional percentage of legend width height: float fractional percentage of legend height lw: float linewidth point: list list of points coordinates for velocity legend textsize: float size of legend entries maxVel: bool if True add max velocity line in red """ # add legend title ax.text( point[1][0], point[1][1], "Approach \n velocity [m/s]", size=textsize, transform=ax.transAxes, va="top", ha="right", fontweight="bold", bbox=dict(facecolor="white", alpha=0.5), ) # plot boundary of velocity box ax.plot( [point[0][0], point[1][0]], [point[0][1], point[1][1]], color="k", linewidth=lw, transform=ax.transAxes, ) # top hor ax.plot( [point[1][0], point[5][0]], [point[1][1], point[5][1]], color="k", linewidth=lw, transform=ax.transAxes, ) # re vert ax.plot( [point[5][0], point[9][0]], [point[5][1], point[9][1]], color="k", linewidth=lw, transform=ax.transAxes, ) # bottom hor ax.plot( [point[9][0], point[0][0]], [point[9][1], point[0][1]], color="k", linewidth=lw, transform=ax.transAxes, ) # le vert # these are the diagonal lines referring to velocity for j in range(2, len(point) - 1): x1 = [point[0][0], point[j][0]] y1 = [point[0][1], point[j][1]] ax.plot(x1, y1, color="k", linewidth=lw, transform=ax.transAxes) if maxVel: # draw red line for max velocity xdIntervall = max(ax.get_xlim()) - min(ax.get_xlim()) ydIntervall = max(ax.get_ylim()) - min(ax.get_ylim()) vDiag = ydIntervall / xdIntervall pVmax = getMaxVelocityPoint(width, height, maxVel, vDiag) lVmax = ax.plot( [point[0][0], pVmax[0]], [point[0][1], pVmax[1]], color="r", linewidth=lw * 1.5, transform=ax.transAxes, )[ 0 ] # return handle not list return lVmax
[docs]def addVelocityValues(ax, dataPoint, point, first=True, inititalNrOfTextElements=np.nan): """add velocity values as labels Parameters ----------- ax: matplotlib axis object dataPoint: list list of points coordinates for velocity label locations point: list list of points coordinates for velocity lines first: bool if True text elements are created - initially required, if False then only changed inititalNrOfTextElements: """ # compute velocity values velocity = [] for i in range(2, len(dataPoint) - 1): deltaS = dataPoint[0][1] - dataPoint[i][1] deltaT = dataPoint[i][0] - dataPoint[0][0] velocity.append(deltaS / deltaT) textElementNr = inititalNrOfTextElements # add velocity labels for j in range(2, len(point) - 1): x1 = [point[0][0], point[j][0]] y1 = [point[0][1], point[j][1]] textElementNr = textElementNr + 1 if first: if j < 5: # text along vertical axes ax.text( x1[1] + 0.01, y1[1] + 0.002, "%.1f" % velocity[j - 2], size=5, fontweight="bold", color="k", transform=ax.transAxes, gid=j, va="center", ha="left", ) else: # text along horizontal axes ax.text( x1[1], y1[1] - 0.01, "%.1f" % velocity[j - 2], size=5, fontweight="bold", color="k", transform=ax.transAxes, gid=j, va="top", ha="center", ) else: ax.texts[textElementNr].set_text("%.1f" % velocity[j - 2]) return textElementNr
[docs]def getVelocityPoints(xMax, yMax, width, height, xinterval, yinterval): """get points for legend creation (box and sloping lines) if xMax, yMax, xinterval, yinterval are all 1 -> points refer to axes coordinates, that range from 0 to 1 if given true values, e.g. in seconds and meters, points are in data coordinates and can be used for velocity calculus etc. Note: used to be an internal function to rangeTimeVelocityLegend, so use with care. Parameters ----------- xMax: float max x extent of data (timeSteps) yMax: float max y extent of data (rangeGates) width: float fractional percentage of legend width height: float fractional percentage of legend height xinterval: float interval on x yinterval: float interval on y Returns -------- points: list list of point coordinates """ points = [] points.append([xMax - width * xinterval, yMax]) # p0 left, top points.append([xMax, yMax]) # p1 right, top points.append([xMax, yMax - height / 4.0 * yinterval]) # p2 right, 0.75*top points.append([xMax, yMax - height / 2.0 * yinterval]) # p3 right, 0.5*top points.append([xMax, yMax - height / 4.0 * 3.0 * yinterval]) # p4 right, 0.25*top points.append([xMax, yMax - height * yinterval]) # p5 right, bottom points.append([xMax - width / 4 * xinterval, yMax - height * yinterval]) # p6 0.75*right, bottom points.append([xMax - width / 2 * xinterval, yMax - height * yinterval]) # p7 0.5*right, bottom points.append([xMax - width / 4 * 3 * xinterval, yMax - height * yinterval]) # p8 0.25*right, bottom points.append([xMax - width * xinterval, yMax - height * yinterval]) # p9 left, bottom return points
[docs]def animationPlot(demData, data, cellSize, resType, cfgRangeTime, mtiInfo, timeStep): """3 panel plot: result in x,y, result in s, l, tt diagram Parameters ----------- demData: dict info on dem with header and rasterData data: numpy array result type data cellSize: float cell size of result type and dem resType: str name of result type, e.g. FV, FT cfgRangeTime: configparser object configuration of range time diagram settings mtiInfo: dict info dictionary for color plot of tt diagram, also info on domain transformation into s,l timeStep: float actual time step of sim result """ # read required configuration for final plots, e.g. result min and max for colorbar range resMin = cfgRangeTime["ANIMATE"].getfloat("resMin") resMax = cfgRangeTime["ANIMATE"].getfloat("resMax") # fetch unit of result type unit = pU.cfgPlotUtils["unit%s" % resType] # choose colormap with min max result type range cmapRes, col, ticksRes, normRes = pU.makeColorMap( pU.colorMaps[resType], resMin, resMax, continuous=pU.contCmap ) # set up 3 panel plot fig = plt.figure(figsize=(pU.figW * 3, pU.figH)) # +++++++++++++++PANEL 1++++++++++++++++++ # result field in x,y with s,l domain on top ax1 = fig.add_subplot(131) # check if nodata_value is found and if replace with nans for plotting demField = np.where( demData["rasterData"] == demData["header"]["nodata_value"], np.nan, demData["rasterData"] ) # initialize x, y vectors of result field domain xllc = demData["header"]["xllcenter"] yllc = demData["header"]["yllcenter"] shiftCorner = demData["header"]["cellsize"] * 0.5 # get vectors for cell center positions x = np.linspace(xllc, xllc + (demData["header"]["ncols"]-1) * cellSize, demData["header"]["ncols"]) y = np.linspace(yllc, yllc + (demData["header"]["nrows"]-1) * cellSize, demData["header"]["nrows"]) # mask data for plot where it is zero data = np.ma.masked_where(data == 0.0, data) # set alpha to zero cmapRes.set_bad(alpha=0) # uncomment this to set the under value for discrete cmap transparent # cmap.set_under(alpha=0) # add DEM hillshade with contour lines ls, CS = pU.addHillShadeContours( ax1, demField, cellSize, [x.min(), x.max(), y.min(), y.max()], colors=["white"] ) # add peak field data extentPlot = [x.min()-shiftCorner, x.max()+shiftCorner, y.min()-shiftCorner, y.max()+shiftCorner] pU.checkExtentFormat(extentPlot, demData["header"]['cellsize'], data, plotName="") im1 = ax1.imshow( data, cmap=cmapRes, norm=normRes, extent=extentPlot, origin="lower", aspect="equal", zorder=4, ) cName1 = "%s [%s]" % (pU.cfgPlotUtils["name" + resType], pU.cfgPlotUtils["unit" + resType]) pU.addColorBar(im1, ax1, ticksRes, None, title=cName1) # add domain transformation info # read avaPath with scale rasterTransfo = mtiInfo["rasterTransfo"] xPath = rasterTransfo["x"] yPath = rasterTransfo["y"] # read domain boundaries with scale cellSizeSL = rasterTransfo["cellSizeSL"] DBXl = rasterTransfo["DBXl"] * cellSizeSL DBXr = rasterTransfo["DBXr"] * cellSizeSL DBYl = rasterTransfo["DBYl"] * cellSizeSL DBYr = rasterTransfo["DBYr"] * cellSizeSL # add indication for run out area based on beta point but fetch for x, y coordinates indStartOfRunout = rasterTransfo["indStartOfRunout"] betaPointX = rasterTransfo["gridx"][indStartOfRunout] betaPointY = rasterTransfo["gridy"][indStartOfRunout] # add indication for avalanche front based on s,l but fetch for x, y coordinates cLower = mtiInfo["cLower"] if np.isnan(cLower): log.debug("No avalanche front found for this time step") else: frontLineX = rasterTransfo["gridx"][cLower] frontLineY = rasterTransfo["gridy"][cLower] ax1.plot(frontLineX, frontLineY, "k:", linewidth=2, zorder=5, label="avalanche front") # add lines to plot about path following domain ax1.plot(xPath, yPath, "k--", zorder=5, label="thalweg") ax1.plot(DBXl, DBYl, "k-", label="s,l domain") ax1.plot(DBXr, DBYr, "k-") ax1.plot([DBXl, DBXr], [DBYl, DBYr], "k-") ax1.plot(betaPointX, betaPointY, "b--", zorder=5, label="beta Point") ax1.legend(loc="upper right") # label x, y axes if cfgRangeTime["ANIMATE"].getboolean("xyEastNorth"): ax1.set_xlabel("East x [m]") ax1.set_ylabel("North y [m]") else: ax1.set_xlabel("x [m]") ax1.set_ylabel("y [m]") # optional add title to panel if cfgRangeTime["ANIMATE"].getboolean("panelTitles"): ax1.set_title("simulation x,y extent at t=%.2fs" % timeStep) # add avaName pU.putAvaNameOnPlot(ax1, cfgRangeTime["GENERAL"]["avalancheDir"], date=False) # +++++++++++++++PANEL 2############# # result field bigger than threshold in s,l with ava front and runout area start ax2 = fig.add_subplot(132) # fetch avalanche front info cLower = mtiInfo["cLower"] slRaster = mtiInfo["slRaster"] rasterTransfo = mtiInfo["rasterTransfo"] rangeRaster = mtiInfo["rangeRaster"] sType = mtiInfo["sType"] # fetch s. l coordinates l = rasterTransfo["l"] indStartOfRunout = rasterTransfo["indStartOfRunout"] # determine if sParallel or sProjected has been used if sType.lower() == "parallel": s = rasterTransfo["sParallel"] - rasterTransfo["sParallel"][indStartOfRunout] sLabel = "Parallel distance to beta point [m]" elif sType.lower() == "projected": s = rasterTransfo["s"] - rasterTransfo["s"][indStartOfRunout] sLabel = "Projected distance to beta point [m]" # create figure # add line indicating location of start of runout area and avalanche front ax2.axhline( y=s[indStartOfRunout], color="b", linestyle="--", label="beta point (%.1f°)" % mtiInfo["betaPointAngle"], ) # only plot front if a front found - e.g. if FV is zero in first time step no front found if np.isnan(cLower): log.debug("No avalanche front found for this time step") else: ax2.axhline( y=s[cLower], color="k", linewidth=2.5, linestyle=(0, (0.1, 2)), dash_capstyle="round", label="avalanche front", ) # add result field masked with threshold bmaskRes = slRaster < cfgRangeTime["GENERAL"].getfloat("thresholdResult") maskResType = np.ma.array(slRaster, mask=bmaskRes) # plot masked result type, add norm res to scale to colorbar cmapRes.set_bad(alpha=0.0) ref2, im3 = pU.NonUnifIm( ax2, l, s, maskResType, "l [m]", sLabel, extent=[l.min(), l.max(), s.min(), s.max()], cmap=cmapRes, norm=normRes, origin="lower", ) # add elevation contours, first get z coordinates of s,l points zPoints = {"x": rasterTransfo["gridx"], "y": rasterTransfo["gridy"]} zPoints, _ = gT.projectOnRaster(demData, zPoints) ls, CS = pU.addHillShadeContours( ax2, zPoints["z"], rasterTransfo["cellSizeSL"], [l.min(), l.max(), s.min(), s.max()], colors=["gray"], onlyContours=True, extentCenters=False, ) # invert y axis ax2.invert_yaxis() # add legend and colorbar ax2.legend(loc="lower right", facecolor="white", framealpha=0.2) # optionally add title if cfgRangeTime["ANIMATE"].getboolean("panelTitles"): ax2.set_title("s,l domain extent") # +++++++++++++++PANEL 3++++++++++++++++++ # tt-diagram of result field bigger than threshold ax3 = fig.add_subplot(133) # fetch required input info mti = mtiInfo["mti"] rangeGates = mtiInfo["rangeGates"] timeList = mtiInfo["timeList"] rangeList = mtiInfo["rangeList"] # in case time steps are not ordered - the colormesh x and y need to be ordered timeIndex = np.argsort(np.array(timeList)) timeListNew = np.array(timeList)[timeIndex] mti = mti[:, timeIndex] # create fig pc = ax3.pcolormesh(timeListNew, rangeGates, mti, vmin=resMin, vmax=resMax, cmap=pU.cmapRangeTime) ax3.plot(timeList, rangeList, ".", color="black", markersize=4, label="avalanche front") ax3.set_xlabel("Time [s]") sTypeCapital = sType[0].upper() + sType[1:] ax3.set_ylabel("%s distance to %s [m]" % (sTypeCapital, mtiInfo["referencePointName"])) # add colorbar and infobox cName = "%s [%s]" % ( cfgRangeTime["GENERAL"]["maxOrMean"] + " " + pU.cfgPlotUtils["name" + resType], pU.cfgPlotUtils["unit" + resType], ) pU.addColorBar(pc, ax3, None, None, title=cName) width = cfgRangeTime["PLOTS"].getfloat("width") height = cfgRangeTime["PLOTS"].getfloat("height") lw = cfgRangeTime["PLOTS"].getfloat("lw") textsize = cfgRangeTime["PLOTS"].getfloat("textsize") xMin = cfgRangeTime["ANIMATE"].getfloat("xMin") xMax = cfgRangeTime["ANIMATE"].getfloat("xMax") yMax = cfgRangeTime["ANIMATE"].getfloat("yMax") yMin = cfgRangeTime["ANIMATE"].getfloat("yMin") xinterval = xMax - xMin yinterval = yMax - yMin kPlot = yinterval / xinterval # fetch points for drawing velocity legend point = getVelocityPoints(1, 1, width, height, 1, 1) # add title and boundary box and diagonal lines using point lVmax = addTitleBox(ax3, width, height, lw, point, textsize, maxVel=False) # compute velocity values dataPoint = getVelocityPoints(xMax, yMax, width, height, xinterval, yinterval) # add velocity legend labels _ = addVelocityValues(ax3, dataPoint, point) # set limits for plot (depends on final time step) ax3.set_ylim([yMin, yMax]) ax3.set_xlim([xMin, xMax]) # add info on avalanche front in legend plt.legend(facecolor="grey", framealpha=0.2, loc="lower right", fontsize=8) # if tt-diagram add beta point info # invert y axis as ava flow starts from minus distance to beta point ax3.invert_yaxis() ax3.axhline(y=0.0, color="b", linestyle="--", label="beta point: %.1f°" % mtiInfo["betaPointAngle"]) # optional - add title to panel if cfgRangeTime["ANIMATE"].getboolean("panelTitles"): ax3.set_title("tt-diagram") # # set path for saving figure outDir = pathlib.Path(cfgRangeTime["GENERAL"]["avalancheDir"], "Outputs", "ana5Utils") outFileName = ( mtiInfo["type"] + "_" + resType + "_" + cfgRangeTime["GENERAL"]["simHash"] + "_%08.3f" % timeStep ) plotPath = pU.saveAndOrPlot({"pathResult": outDir}, outFileName, fig)