R. Ata and A. Soulaïmani. A stabilized sph method for inviscid shallow water flows. International Journal for Numerical Methods in Fluids, 47:139–159, 2005.


S. Bakkehøi, U. Domaas, and K. Lied. Calculation of snow avalanche runout distance. Annals of Glaciology, 4:24–29, 1983.


P. Bartelt, B. Salm, and U. Gruber. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. Journal of Glaciology, 45(150):242–254, 1999.


Gloria Faccanoni and Anne Mangeney. Exact solution for granular flows. International Journal for Numerical and Analytical Methods in Geomechanics, 37(10):1408–1433, 2013.


J. T. Fischer, R. Fromm, P. Gauer, and B. Sovilla. Evaluation of probabilistic snow avalanche simulation ensembles with Doppler radar observations. Cold Regions Science and Technology, 2013. doi:10.1016/j.coldregions.2013.09.011.


J.-T. Fischer. A novel approach to evaluate and compare computational snow avalanche simulation. Natural Hazards and Earth System Science, 13(6):1655–1667, 2013. URL:, doi:10.5194/nhess-13-1655-2013.


J.-T. Fischer and A. Kofler. SamosAT CoSiCa. Technical Report, Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Innsbruck, Austria, 2013.


Columban Hutter, M. Siegel, Stuart Savage, and Y. Nohguchi. Two-dimensional spreading of a granular avalanche down an inclined plane part i. theory. Acta Mechanica, 100:37–68, 01 1993. doi:10.1007/BF01176861.


David M Hyman, Andrea Bevilacqua, and Marcus I Bursik. Statistical theory of probabilistic hazard maps: a probability distribution for the hazard boundary location. Natural Hazards and Earth System Sciences, 19(7):1347–1363, 2019.


Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. SPH Fluids in Computer Graphics. In Sylvain Lefebvre and Michela Spagnuolo, editors, Eurographics 2014 - State of the Art Reports. The Eurographics Association, 2014. doi:10.2312/egst.20141034.


A Köhler, JN McElwaine, and B Sovilla. Geodar data and the flow regimes of snow avalanches. Journal of geophysical research: earth surface, 123(6):1272–1294, 2018.


K. Lied and K. Bakkehøi. Empirical calculations of snow–avalanche run–out distance based on topographic parameters. Journal of Glaciology, 26(94):165–177, 1980. doi:10.3189/S0022143000010704.


M. Liu and G.R. Liu. Smoothed particle hydrodynamics (sph): an overview and recent developments. Archives of Computational Methods in Engineering, 17:25–76, 03 2010. doi:10.1007/s11831-010-9040-7.


Anne Mangeney-Castelnau, Jean-Pierre Vilotte, Marie-Odile Bristeau, Benoit Perthame, François Bouchut, Chiara Simeoni, and Sudhakar Yerneni. Numerical modeling of avalanches based on saint venant equations using a kinetic scheme. Journal of Geophysical Research: Solid Earth, 108:2527–2544, 11 2003. doi:10.1029/2002JB002024.


J.J. Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30:543–574, 1992.


Matthias Rauter and Anselm Köhler. Constraints on entrainment and deposition models in avalanche simulations from high-resolution radar data. Geosciences, 2020. URL:, doi:10.3390/geosciences10010009.


R. Sailer, W. Fellin, R. Fromm, P. Jörg, L. Rammer, P. Sampl, and A. Schaffhauser. Snow avalanche mass-balance calculation and simulation-model verification. Annals of Glaciology, 48(1):183–192, 2008.


B. Salm. A short and personal history of snow avalanche dynamics. Cold Regions Science and Technology, 39(2-3):83–92, 2004.


P. Sampl. SamosAT Modelltheorie und Numerik. Technical Report, AVL List GMBH, 2007.


P. Sampl and M. Granig. Avalanche simulation with SAMOS-AT. In Proceedings of the International Snow Science Workshop, Davos. 2009.


S. B. Savage and K. Hutter. The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199(1):177–215, 1989.


A. Voellmy. Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, Sonderdruck aus dem 73. Jahrgang(12, 15, 17, 19 und 37):1–25, 1955.


P.M. Wagner. Kalibrierung des α-β-modells für das ermitteln der auslauflänge von kleinen und mittleren lawinen. Master's thesis, Institut für Alpine Naturgefahren (IAN), BOKU-Universität für Bodenkultur, 2016.


Y. Wang, K. Hutter, and S.P. Pudasaini. The savage-hutter theory: a system of partial differential equations for avalanche flows of snow, debris, and mud. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 84(8):507–527, 2004.


T. Zwinger. Dynamik einer Trockenschneelawine auf beliebig geformten Berghangen. PhD Thesis, Technischen Universitaet Wien, 2000.


T. Zwinger, A. Kluwick, and P. Sampl. Numerical simulation of dry-snow avalanche flow over natural terrain. Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations, Hutter, K. and Kirchner, N., Springer Verlag, 11:161–194, 2003.