References

BakkehoiDL83

S. Bakkehøi, U. Domaas, and K. Lied. Calculation of snow avalanche runout distance. Annals of Glaciology, 4:24–29, 1983.

FM13

Gloria Faccanoni and Anne Mangeney. Exact solution for granular flows. International Journal for Numerical and Analytical Methods in Geomechanics, 37(10):1408–1433, 2013.

FFGS13

J. T. Fischer, R. Fromm, P. Gauer, and B. Sovilla. Evaluation of probabilistic snow avalanche simulation ensembles with Doppler radar observations. Cold Regions Science and Technology, 2013. doi:10.1016/j.coldregions.2013.09.011.

Fis13

J.-T. Fischer. A novel approach to evaluate and compare computational snow avalanche simulation. Natural Hazards and Earth System Science, 13(6):1655–1667, 2013. URL: http://www.nat-hazards-earth-syst-sci.net/13/1655/2013/, doi:10.5194/nhess-13-1655-2013.

HSSN93

Columban Hutter, M. Siegel, Stuart Savage, and Y. Nohguchi. Two-dimensional spreading of a granular avalanche down an inclined plane part i. theory. Acta Mechanica, 100:37–68, 01 1993. doi:10.1007/BF01176861.

IOS+14

Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. SPH Fluids in Computer Graphics. In Sylvain Lefebvre and Michela Spagnuolo, editors, Eurographics 2014 - State of the Art Reports. The Eurographics Association, 2014. doi:10.2312/egst.20141034.

LBakkehoi80

K. Lied and K. Bakkehøi. Empirical calculations of snow–avalanche run–out distance based on topographic parameters. Journal of Glaciology, 26(94):165–177, 1980. doi:10.3189/S0022143000010704.

LL10

M. Liu and G.R. Liu. Smoothed particle hydrodynamics (sph): an overview and recent developments. Archives of Computational Methods in Engineering, 17:25–76, 03 2010. doi:10.1007/s11831-010-9040-7.

Mon92

J.J. Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30:543–574, 1992.

SFF+08

R. Sailer, W. Fellin, R. Fromm, P. Jörg, L. Rammer, P. Sampl, and A. Schaffhauser. Snow avalanche mass-balance calculation and simulation-model verification. Annals of Glaciology, 48(1):183–192, 2008.

Sal04

B. Salm. A short and personal history of snow avalanche dynamics. Cold Regions Science and Technology, 39(2-3):83–92, 2004.

Sam07

P. Sampl. SamosAT Modelltheorie und Numerik. Technical Report, AVL List GMBH, 2007.

SG09

P. Sampl and M. Granig. Avalanche simulation with SAMOS-AT. In Proceedings of the International Snow Science Workshop, Davos. 2009.

SH89

S. B. Savage and K. Hutter. The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199(1):177–215, 1989.

Wag16

P.M. Wagner. Kalibrierung des α-β-modells für das ermitteln der auslauflänge von kleinen und mittleren lawinen. Master's thesis, Institut für Alpine Naturgefahren (IAN), BOKU-Universität für Bodenkultur, 2016.

Zwi00

T. Zwinger. Dynamik einer Trockenschneelawine auf beliebig geformten Berghangen. PhD Thesis, Technischen Universitaet Wien, 2000.

ZKS03

T. Zwinger, A. Kluwick, and P. Sampl. Numerical simulation of dry-snow avalanche flow over natural terrain. Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations, Hutter, K. and Kirchner, N., Springer Verlag, 11:161–194, 2003.